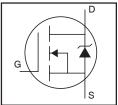


AUTOMOTIVE MOSFET

IRF2903ZPbF


Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free


Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET® Power MOSFET

 $V_{DSS} = 30V$ $R_{DS(on)} = 2.4 \text{m}\Omega$ $I_D = 75 \text{A}$

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

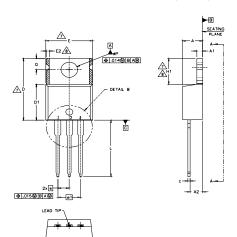
	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	260	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	180	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	75	
I _{DM}	Pulsed Drain Current ①	1020	
P _D @T _C = 25°C	Power Dissipation	290	W
	Linear Derating Factor	2.0	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ^②	290	mJ
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ©	820	
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy ©		mJ
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw ⑦	10 lbf•in (1.1N•m)	

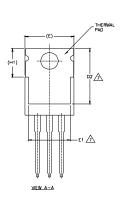
Thermal Resistance

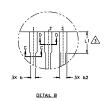
	Parameter	Тур.	Max.	Units	
$R_{\theta JC}$	Junction-to-Case ®		0.51		
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface ⑦	0.50		°C/W	
$R_{\theta,JA}$	Junction-to-Ambient ⑦®		62		

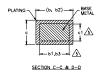
IRF2903ZPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)


	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.021		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.9	2.4	mΩ	$V_{GS} = 10V, I_D = 75A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 150 \mu A$
gfs	Forward Transconductance	120			S	$V_{DS} = 10V, I_D = 75A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 30V$, $V_{GS} = 0V$
				250		$V_{DS} = 30V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I_{GSS}	Gate-to-Source Forward Leakage			200	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-200		$V_{GS} = -20V$
Q_g	Total Gate Charge		160	240		$I_D = 75A$
Q_{gs}	Gate-to-Source Charge		51		nC	$V_{DS} = 24V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		58			V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		24			$V_{DD} = 15V$
t _r	Rise Time		100			$I_D = 75A$
t _{d(off)}	Turn-Off Delay Time		48		ns	$R_G = 3.2 \Omega$
t _f	Fall Time		37			V _{GS} = 10V ③
L_D	Internal Drain Inductance		4.5			Between lead,
					nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		6320			$V_{GS} = 0V$
Coss	Output Capacitance		1980			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		1100		pF	f = 1.0MHz
Coss	Output Capacitance		5930			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		2010			$V_{GS} = 0V, V_{DS} = 24V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		3050			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 24V $


Source-Drain Ratings and Characteristics


	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			75		MOSFET symbol	
	(Body Diode)				Α	showing the	
I _{SM}	Pulsed Source Current			1020		integral reverse	
	(Body Diode) ①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 75A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		34	51	ns	$T_J = 25^{\circ}C$, $I_F = 75A$, $V_{DD} = 15V$	
Q _{rr}	Reverse Recovery Charge		29	44	nC	di/dt = 100A/µs ③	
t _{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligib	le (turn-on is dominated by LS+LD)	


IRF2903ZPbF

TO-220AB Package Outline Dimensions are shown in millimeters (inches)

- 1.— DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M— 1994.
 2.— DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
 3.— LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
 4.— DIMENSION D, DI & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DIMENSION D. 1, 35 dc 1 APPLY TO BASE METAL ONLY.
 6.— CONTROLLING DIMENSION: INCHES.
 7.— THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1

- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING
 AND SINGULATION IRREGULARITIES ARE ALLOWED.
 OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.)
 WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	MILLIM	ETERS	INC	INCHES		
	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	3,56	4.83	.140	.190		
A1	0.51	1.40	.020	.055		
A2	2.03	2.92	.080	,115		
ь	0.38	1.01	.015	.040		
ь1	0.38	0.97	.015	.038	5	
b2	1,14	1.78	.045	.070		
b3	1.14	1.73	.045	.068	5	
c	0.36	0.61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
E	9.65	10.67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	-	0.76	-	.030	8	
e	2,54		.100			
e1	5.08		.200 BSC			
H1	5.84	6.86	.230	.270	7,8	
L	12.70	14.73	.500	.580		
L1	-	6.35	_	.250	3	
øΡ	3.54	4.08	.139	.161		
0	2,54	3,42	.100	,135		

LEAD ASSIGNMENTS

HEXFET

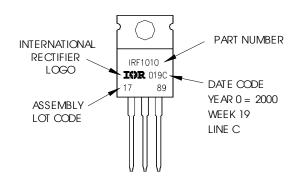
IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE/OPEN 2.- CATHODE 3.- ANODE

IRF2903ZPbF


TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF 1010

LOT CODE 1789

ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free"

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 0.10mH ⑥ $R_G = 25\Omega$, $I_{AS} = 75A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- ③ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
- $\ \, \oplus \,\, C_{oss}$ eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- This is only applied to TO-220AB pakcage.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market.

Qualification Standards can be found on IR's Web site.

